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Midpoint Quadrature Formulas 

By Seymour Haber 

A family of quadrature formulas for the interval (0, 1) can be constructed in 
the following manner: For any positive integer n, we partition (0, 1) into subinter- 
vals I,, I2, * * *, In (I, being the leftmost, I2 adjacent to it, etc.) of lengths a,, a2, 
** , an, respectively. Now let xk be the midpoint of Ik, for k = 1, * n, and take 

(1) aif(xi) + ... + anf(xn) 

as the approximation to f 1 f(x)dx. The simplest of these rules is the "Euler's" or 
"midpoint" rule 

ff(x)dx =f() . 

We will refer to the members of this family as "midpoint quadrature formulas" and 
determine their properties. We first find their "degrees of precision"-that is, for 
any formula, the highest integer p such that the formula is exact for all polynomials 
of degree p or lower. 

THEOREM 1. The degree of precision of a midpoint quadrature formula is 1. 
Proof. The formula is exact for constants, since necessarily a1 + a2 + * + an 

= 1. To check the exactness of the formula for f(x) = x, we first note that 

(2) xl= -a,X2= a,+ 222 I..2*xn= a,+ *X+anl+ 2'. (2) 
a~~2 a22 

So for the integral j1 x dx, (1) gives us 

a,(ai/2) + a2(ai + a2/2) + ... + an(a1 + + an-, + an/2). 
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But this is just 

2 (ai2 + a22 + * + a,2 + 2a1a2 + 2a1a3 + * + 2anlan), 

or '(a, + * + an)2, which is 2. Thus the degree of precision is at least one. To 
show it is no greater, we calculate error in integrating x2/2 by the rule: 

J: x Xi-1a | 2dx -E as - = ;- 2 Ea ai(l+ a2 + . + ai_l + ). 

Multiplying out and collecting terms in the last sum, we obtain: 

Zaix2 =i ai + E? aiaj2?2 Z iajak, 
i 4 i sF j 

where the indices of summation run from 1 to n. 
Now 

1=(al+ **+an)3 = ai3 + 3 Z aiaj2 + 6 a iajak , 
i i?j iieji$k 

so that 

F- . aixi2 = -j2 (a,3 + ... + an 3). 

It follows that 

(3) - dx - E aix 2 - 2 (a,3+* + an3) > 0, e2 2 2 

which proves the theorem. 
THEOREM 2. The error of a midpoint quadrature formula, for an integrand with 

continuous second derivative, is given by 

(1 ~~ ~~~~1 3 ), (4) f (x)dx - a aif(xi) = 2 (al + + an3)f"(t) 

for some ( in (0, 1). 
Proof. By a general remainder theorem (see, e.g., [1]) the error may be written 

in the form 

(5) | f"(t)K(t)dt 

where 

K(t) =- 2 -t) _ai(xi-t) . 
x9 > t 

To derive (4) from (5) it is sufficient to show that K(t) does not change sign in 
(0, 1); for then we may write 

f f"(t)K(t)dt = f"(t) 1 K(t)dt, 

and, taking f(x) = x2/2, we see from (3) that 
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JK(t)dt = 2 (a,3 + + an3). 

We shall show that, in fact, K(t) _ 0 for t E [O, 1]. 
For t between Xk and Xk+1, 

n 

2K(t) = (1 - t)2-2 E a(xi - t) 
i=k+l 

n n 
= (1-t)2-2 ? ai(l-t) + 2 E ai(l-xi). 

i=k+l i=k+l 

Now, in fact 

n 

2 E ai(l - xi) = (ak+l + ak+2 + + an)2. 
i=k+l 

To prove this by induction, we need only show that 

2ak(1 - Xk) = ak + 2ak(ak+l + *-- + a.), 

which follows directly from the fact that 

Xk = -an-an_-I -ak+1-ak/2. 

Therefore, in [Xk, Xk+l), 

2K (t) =( (1 -t) -(ak+1 + ***+ an) )= _0 

and it can similarly be shown that K is nonnegative in [0, xi] and [xnl]. 
It is easy to see that, given n, the coefficient (a13 + -.. + an3)/24 in (4) is 

least when a, = a2 = *.. = an = 1/n, so that for any n, the "best" midpoint 
quadrature rule is simply the repeated Euler's rule. 
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